
Generic Partition Refinement
and

Weighted Tree Automata

Hans-Peter Deifel, Stefan Milius, Lutz Schröder, Thorsten
Wißmann

FM’19

10.10.2019

1 / 22

Partition Refinement

Paige-

Tarja
n

m · lo
gn

Hopcroftn · logn

Markov

Chain

Lumping

m · log
n

Colo
ur

Refin
em

ent

m
· log

n

…andmany more

2 / 22

Partition Refinement

Paige-

Tarja
n

m · lo
gn

Hopcroftn · logn

Markov

Chain

Lumping

m · log
n

Colo
ur

Refin
em

ent

m
· log

n

…andmany more

2 / 22

Partition Refinement

Paige-

Tarja
n

m · lo
gn

Hopcroftn · logn

Markov

Chain

Lumping

m · log
n

Colo
ur

Refin
em

ent

m
· log

n

…andmany more

2 / 22

Partition Refinement

Paige-

Tarja
n

m · lo
gn

Hopcroftn · logn

Markov

Chain

Lumping

m · log
n

Colo
ur

Refin
em

ent

m
· log

n

…andmany more

2 / 22

Partition Refinement

Paige-

Tarja
n

m · lo
gn

Hopcroftn · logn

Markov

Chain

Lumping

m · log
n

Colo
ur

Refin
em

ent

m
· log

n

…andmany more

2 / 22

Coalgebraic
Partition

Refinement

3 / 22

Coalgebras

X FX
c

states
successor map

type functor

Type Functor F : Set→ Set

FX= P(A × X)
Labelled
Transition
Systems

2 × XA

Deterministic
Automata

R(X)

Markov
Chains . . .

4 / 22

Coalgebras

X FX
c

states
successor map

type functor

Type Functor F : Set→ Set

FX= P(A × X)
Labelled
Transition
Systems

2 × XA

Deterministic
Automata

R(X)

Markov
Chains . . .

4 / 22

Behavioural Equivalence

X FX

Y FY

c

states
successor map

type functor

d

h

homomorphism

Fh

Identified by Coalgebra Homomorphism

FX= P(A × X)
Bisimilarity

2 × XA

Language
Equivalence

R(X)

Weighted
Bisimilarity

. . .

5 / 22

Coalgebraic Partition Refinement

Generic
Algorithm

Functor F F-Coalgebra

Refinement
Interface

for F

Partition

6 / 22

Splitting Blocks

.

0.3 0.7 0.5 0.5 0.2 0.8

B

S B \ S

A

" "

"

7 / 22

Splitting Blocks

.

0.3 0.7 0.5 0.5 0.2 0.8

B

S B \ S

A

" "

"

7 / 22

Splitting Blocks

.

0.3 0.7 0.5 0.5 0.2 0.8

B

S B \ S

A

" "

"

7 / 22

Coalgebraic Partition Refinement

Generic
Algorithm

Functor F F-Coalgebra

Refinement
Interface

for F

Partition

8 / 22

Refinement Interface for F

Functor Encoding
Labels A ♭ : FX→ B

Bags

(A × X)

Refinement Interface
Type W (abstract, could be ints, reals, trees, …)
init : F1 × BA→W
update : BA

Labels to S

×W

Weight of B

→W × F3 ×W

9 / 22

Refinement Interface for F

Functor Encoding
Labels A ♭ : FX→ B

Bags

(A × X)

Refinement Interface
Type W (abstract, could be ints, reals, trees, …)
init : F1 × BA→W
update : BA

Labels to S

×W

Weight of B

→W × F3 ×W


.

1 k b· · · · · ·

B

S B \ S

9 / 22

Refinement Interface for F

Functor Encoding
Labels A ♭ : FX→ B

Bags

(A × X)

Refinement Interface
Type W (abstract, could be ints, reals, trees, …)
init : F1 × BA→W
update : BA

Labels to S

×W

Weight of B

→W × F3 ×W

Example: FX = RX (real-valued functor)

A := R W := R× R

init(_, ) = (0,)
update(, (r, b)) = ((r + b − ,), . . .)

9 / 22

Refinement Interface for F

Functor Encoding
Labels A ♭ : FX→ B

Bags

(A × X)

Refinement Interface
Type W (abstract, could be ints, reals, trees, …)
init : F1 × BA→W
update : BA

Labels to S

×W

Weight of B

→W × F3 ×W

Modular: Refinement Interface can automatically be derived for
composite functors (e.g. PD(−),M × M(−))

9 / 22

Implementation “CoPaR”

Generic
Imple-

mentation

{f,n} x P({a,b} x X)

q: (n, {(a, p), (b, r)})
p: (n, {(a, q), (b, r)})
r: (f, {(a, q), (b, p)})

Refinement
Interface

Block 0: r
Block 1: q, p

Available at:
git8.cs.fau.de/
software/copar

10 / 22

git8.cs.fau.de/software/copar
git8.cs.fau.de/software/copar

Implementation “CoPaR”

Generic
Imple-

mentation

{f,n} x P({a,b} x X)

q: (n, {(a, p), (b, r)})
p: (n, {(a, q), (b, r)})
r: (f, {(a, q), (b, p)})

Refinement
Interface

Block 0: r
Block 1: q, p

Available at:
git8.cs.fau.de/
software/copar

10 / 22

git8.cs.fau.de/software/copar
git8.cs.fau.de/software/copar

Implementation “CoPaR”

Generic
Imple-

mentation

{f,n} x P({a,b} x X)

q: (n, {(a, p), (b, r)})
p: (n, {(a, q), (b, r)})
r: (f, {(a, q), (b, p)})

Refinement
Interface

Block 0: r
Block 1: q, p

Available at:
git8.cs.fau.de/
software/copar

10 / 22

git8.cs.fau.de/software/copar
git8.cs.fau.de/software/copar

Implementation - Refinement Interface

Math
init : F1 × BA→W
update : BA ×W→W × F3 ×W
Haskell
class (Ord (F1 f), Ord (F3 f)) ⇒ RefinementInterface f where

init :: F1 f → [Label f] → Weight f
update :: [Label f] → Weight f → (Weight f, F3 f, Weight f)

Also Modular: Automatically derived for composite functors
(e.g. PD(−),M × M(−))

11 / 22

Complexity

Refinement Interface
init : F1 × BA→W, update : BA ×W→W × F3 ×W

O(|ℓ| · p(n,m)) O(|ℓ| · p(n,m))

|ℓ| number of labels to subblock (BA)
n number of states in coalgebra
m number of edges in coalgebra

12 / 22

Complexity

Refinement Interface
init : F1 × BA→W, update : BA ×W→W × F3 ×W

O(|ℓ| · p(n,m)) O(|ℓ| · p(n,m))

Overall
O((m + n) · logn · p(n,m))

Modularity: May add intermediate states

12 / 22

System Functor FX Run-Time (m ≥ n) Specific algorithm
Transition
Systems PfX m · logn = m · logn Paige, Tarjan 1987

LTS Pf(N× X) m · logm = m · logm Dovier, Piazza, Policriti 2004

> m · logn Valmari 2009

Markov
Chains R(X) m · logn = m · logn Valmari, Franceschinis 2010

DFA 2 × XA (A fixed) n · logn = n · logn Hopcroft 1971

2 × Pf(A × X) |A| · n ·
log(n + |A|) ≈ |A| · n · logn Gries 1973/Knuutila 2001

Segala
Systems Pf(A × DX) mD · logmPf

< m · logn Baier, Engelen,
Majster-Cederbaum 2000

= mD · logmPf Groote, Verduzco, de Vink 2018

Colour
Refinement BfX m · logn = m · logn Berkholz, Bonsma, Grohe 2017

Weighted
Tree
Automata

M × M(X)
M non-cancellative

m · log2m ≪ m · n Högberg, Maletti, May 2007

M × M(X)
M cancellative

m · logm =
poly. bound

m · logn Högberg, Maletti, May 2007

Case Study: Weighted Tree Automata

Definition
WTA: (Q,,M, ƒ , μ)

Q: Set of states
: Ranked alphabet
M: Semiring (M, ·,+)
ƒ : Final weight distribution ƒ : Q→ M
μ: Transition function μ : k → Qk → Q→ M

14 / 22

Case Study: Weighted Tree Automata

Example Language: zigzag (Högberg, Maletti, May)

 = {β/0, σ/2}, M = N

zigzg: T → N

zigzg(β) = 1
zigzg(σ(β,_)) = 2
zigzg(σ(σ(_, t),_))

= 2 + zigzg(t)

σ 7→ 3

σ 7→ 2 β 7→ 1

β 7→ 1 β 7→ 1

⇒ Recognized by automaton with 3 states

15 / 22

Case Study: Weighted Tree Automata

Tasks

Describe the functor

FX = M × M(X)

Find equivalence that corresponds to coalgebraic behavioural
equivalence

“Backwards Bisimulation”

Implement refinement interface

Composite of:
M × −
M(−)
−

16 / 22

Case Study: Weighted Tree Automata

Tasks

Describe the functor
FX = M × M(X)
Find equivalence that corresponds to coalgebraic behavioural
equivalence

“Backwards Bisimulation”

Implement refinement interface

Composite of:
M × −
M(−)
−

16 / 22

Case Study: Weighted Tree Automata

Tasks

Describe the functor
FX = M × M(X)
Find equivalence that corresponds to coalgebraic behavioural
equivalence
“Backwards Bisimulation”
Implement refinement interface

Composite of:
M × −
M(−)
−

16 / 22

Case Study: Weighted Tree Automata

Tasks

Describe the functor
FX = M × M(X)
Find equivalence that corresponds to coalgebraic behavioural
equivalence
“Backwards Bisimulation”
Implement refinement interface

Composite of:
M × −
M(−)
−

16 / 22

Case Study: Weighted Tree Automata

Tasks

Describe the functor
FX = M × M(X)
Find equivalence that corresponds to coalgebraic behavioural
equivalence
“Backwards Bisimulation”
Implement refinement interface

Composite of:
M × − Done
M(−)
−

16 / 22

Case Study: Weighted Tree Automata

Tasks

Describe the functor
FX = M × M(X)
Find equivalence that corresponds to coalgebraic behavioural
equivalence
“Backwards Bisimulation”
Implement refinement interface

Composite of:
M × − Done
M(−)
− Done

16 / 22

Case Study: Weighted Tree Automata

Tasks

Describe the functor
FX = M × M(X)
Find equivalence that corresponds to coalgebraic behavioural
equivalence
“Backwards Bisimulation”
Implement refinement interface

Composite of:
M × − Done
M(−) ???
− Done

16 / 22

Refinement Interface for M(−)

M cancellative ⇔  + c = b + c⇒  = b

Refinement Interface

M cancellative? Done (via Grothendieck construction)
M non-cancellative? ???

17 / 22

Non-cancellative Monoids

Problem
Need to subtract B − S



.

1 kb1· · · · · ·

B

S B \ S

Trick
We know:

S = 1 + . . . + n, B = 1 + . . . + n + b1 + . . . + bm

⇒ Don’t evaluate sums; store and manipulate symbolically

18 / 22

Non-cancellative Monoids

Problem
Need to subtract B − S



.

1 kb1· · · · · ·

B

S B \ S

Trick
We know:

S = 1 + . . . + n, B = 1 + . . . + n + b1 + . . . + bm

⇒ Don’t evaluate sums; store and manipulate symbolically

18 / 22

Complexity for non-cancellative monoids
Sums stored as balanced search trees M→ N

⇒ Size of those trees min(|M|,m)
⇒ Operations in O(logmin(|M|,m))

init
O(1)

update
O(|ℓ| · logmin(|M|,m))

⇓
p(n,m) = logmin(|M|,m)
⇓ ⇓

M finite
O(m logm)

M infinite
O(m log2m)

19 / 22

Complexity for non-cancellative monoids
Sums stored as balanced search trees M→ N

⇒ Size of those trees min(|M|,m)
⇒ Operations in O(logmin(|M|,m))

init
O(1)

update
O(|ℓ| · logmin(|M|,m))
⇓

p(n,m) = logmin(|M|,m)

⇓ ⇓
M finite
O(m logm)

M infinite
O(m log2m)

19 / 22

Complexity for non-cancellative monoids
Sums stored as balanced search trees M→ N

⇒ Size of those trees min(|M|,m)
⇒ Operations in O(logmin(|M|,m))

init
O(1)

update
O(|ℓ| · logmin(|M|,m))
⇓

p(n,m) = logmin(|M|,m)
⇓ ⇓

M finite
O(m logm)

M infinite
O(m log2m)

19 / 22

Random WTAs in 16GB of RAM

4×X 4×X2 4×X3 4×X4 4×X5

0.6

0.8

1

1.2

1.4
·105

signature

st
at

es

(2,∨,0)
(N,mx,0)
(2,∨,0)64

11–17 million edges

< 5 minutes

20 / 22

Random WTAs in 16GB of RAM

4×X 4×X2 4×X3 4×X4 4×X5

0.6

0.8

1

1.2

1.4
·105

signature

st
at

es

(2,∨,0)
(N,mx,0)
(2,∨,0)64

11–17 million edges

< 5 minutes

20 / 22

System Functor FX Run-Time (m ≥ n) Specific algorithm
Transition
Systems PfX m · logn = m · logn Paige, Tarjan 1987

LTS Pf(N× X) m · logm = m · logm Dovier, Piazza, Policriti 2004

> m · logn Valmari 2009

Markov
Chains R(X) m · logn = m · logn Valmari, Franceschinis 2010

DFA 2 × XA (A fixed) n · logn = n · logn Hopcroft 1971

2 × Pf(A × X) |A| · n ·
log(n + |A|) ≈ |A| · n · logn Gries 1973/Knuutila 2001

Segala
Systems Pf(A × DX) mD · logmPf

< m · logn Baier, Engelen,
Majster-Cederbaum 2000

= mD · logmPf Groote, Verduzco, de Vink 2018

Colour
Refinement BfX m · logn = m · logn Berkholz, Bonsma, Grohe 2017

Weighted
Tree
Automata

M × M(X)
M non-cancellative

m · log2m ≪ m · n Högberg, Maletti, May 2007

M × M(X)
M cancellative

m · logm =
poly. bound

m · logn Högberg, Maletti, May 2007

Thanks!

22 / 22

