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Coalgebras

SUCCessor map

states 4\ l \/ type functor
c

X—FX
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Coalgebras

SUCCessor map

states ‘\ l \/ type functor
C
FX

X

Type Functor F: Set — Set

FX= P(A x X) 2 x XA RX)
Labelled Deterministic Markov
Transition Automata Chains
Systems
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Behavioural Equivalence

SUcCcessor map

states \ Q / type functor
c

X FX
/\*‘ h Fh
homomorphism Y FY

d

Identified by Coalgebra Homomorphism

FX= P(A x X) 2 x XA R&)
Bisimilarity Language Weighted
Equivalence Bisimilarity
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Coalgebraic Partition Refinement

Functor F F-Coalgebra
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Generic Interface
Algorithm
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Refinement Interface for F

Functor Encoding L Bags
Labels A b:FX — B(A x X)

Refinement Interface

Type W (abstract, could be ints, reals, trees, ..)
init: F1x BA—- W
update: BAx W —- W x F3x W
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Refinement Interface for F

Functor Encoding L Bags
Labels A b:FX — B(A x X)

Refinement Interface

Type W (abstract, could be ints, reals, trees, ..)
init: F1x BA—- W
update: BAx W —- W x F3x W

Example: FX = RX (real-valued functor)

A=R W:=RxR
init(_, 0 =(0,Z0)
update(,, (b)) =((r+b—2LZ0,...)
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Refinement Interface for F

Functor Encoding L Bags
Labels A b:FX — B(A x X)

Refinement Interface

Type W (abstract, could be ints, reals, trees, ..)
init: F1x BA—- W
update: BAx W —- W x F3x W

Modular: Refinement Interface can automatically be derived for
composite functors (e.g. PD(—), M x MZ7))
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Implementation “CoPaR”

{f,n} x P{a,b} x X)

q: (@m, {(a, p), (b, O}
p: (n, {(a, @), (b, ©)})
r: (£, {(a, @), (b, P

Generic )
Refinement
Imple-
. Interface
mentation

\\\\\_,/H Block 0: r

Block 1: q, p
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git8.cs.fau.de/software/copar
git8.cs.fau.de/software/copar

Implementation - Refinement Interface

Math

init: F1x BA—-W

update: BAx W - W x F3 x W

Haskell

class (Ord (F1f), Ord (F3 f)) = RefinementInterface f where

init :: F1 f — [Label f{] — Weight f
update :: [Label f] — Weight f — (Weight f, F3 f, Weight f)

Also Modular: Automatically derived for composite functors
(e.g. PD(=), M x M(Z-))
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Complexity

Refinement Interface

init: F1 x BA— W, update:BAxW — W x F3x W

( )

O(|£] - p(n, m)) O] - p(n, m))

|| number of labels to subblock (BA)
N number of states in coalgebra

m number of edges in coalgebra
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Complexity

Refinement Interface
init: F1x BA— W, update:BAxW —- W x F3x W

( )

O(|£] - p(n, m)) O] - p(n, m))

Overall
O((m+n)-logn-p(n, m))

Modularity: May add intermediate states
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System Functor FX Run-Time (m>n)  Specific algorithm
Transition ) .
Systems PiX m- |Og n = m- |Og n Paige, Tarjan 1987
LTS Pf(]N X X) m- IOg m = m- IOg m Dovier, Piazza, Policriti 2004
> m-logn Valmari 2009
Markov
. R(X) m-logn = m-logn Valmari, Franceschinis 2010
Chains 9
DFA 2 X XA (A fixed) n-logn = n-logn Hopcroft 1971
2 x Pr(A x X) Iogll?rlr.-f |.A|) ~ |A|-n-logn Gries 1973/Knuutila 2001
. Baier, Engelen,
g)elftaelrans ’Pf(A X DX) mop - |og mp; < m lOg n Majster-Cederbaum 2000
= mop - Iog Mp;  Groote, Verduzco, de Vink 2018
Colour
. BeX m-logn = m-logn Berkholz, Bonsma, Grohe 2017
Refinement g
) M x MEX)
Weighted _ m-log’m < m-n Hogberg, Maletti, May 2007
Tr M non-cancellative
« M x M(EX)
Automata m- |Og m m- |Og n Hégberg, Maletti, May 2007

M cancellative

poly._bound




Case Study: Weighted Tree Automata

Definition
WTA: (Q, Z, M, f, u)

m Q: Set of states

m 2: Ranked alphabet

m M: Semiring (M, -, +)

m f: Final weight distribution f: Q — M

m [I: Transition function U : Zx — Ok -Q-M
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Case Study: Weighted Tree Automata

Example Language: zigzag (Hogberg, Maletti, May)
Z={B0,02}, M=N

zigzag: Tz —» N
zigzag(B) =1
zigzag(o(B,_))=2
zigzag(o(o(_ t),_))
= 2 + zigzag(t)

= Recognized by automaton with 3 states

15/ 22



Case Study: Weighted Tree Automata

Tasks

m Describe the functor

m Find equivalence that corresponds to coalgebraic behavioural
equivalence

m Implement refinement interface
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Refinement Interface for M)

M cancellative = a+c=b+c=>a=>b

Refinement Interface

m M cancellative? Done (via Grothendieck construction)

m M non-cancellative? 777
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Non-cancellative Monoids

Problem X
N\
Need to subtract Wg — Ws al/- . m
o S

S B\S
B
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Non-cancellative Monoids

Probl X
ropiem /\\\

Need to subtract Wg — Ws ai---agby >
L\
® -+ @ ® -

S B\S

B

Trick
We know:

Ws=ai+...+an, Wg=ai+...+apn+bi1+...+bm

=> Don't evaluate sums; store and manipulate symbolically
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Complexity for non-cancellative monoids

Sums stored as balanced search trees M — IN
= Size of those trees min(|M|, m)
= Operations in O(log min(|M|, m))

init update
o(1) O(2] - log min(|M|, m))
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Complexity for non-cancellative monoids

Sums stored as balanced search trees M — IN
= Size of those trees min(|M|, m)
= Operations in O(log min(|M|, m))

init update
0(1) O(2] - log min(|M|, m))
Y
p(n, m) =log min(|M|, m)

7\

M finite M infinite

O(mlogm) o(mlog?m)
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Random WTAs in 16GB of RAM
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Thanks!
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