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Refinement Interface for F

Functor Encoding
Labels A ♭ : FX→ B

Bags

(A × X)

Refinement Interface
Type W (abstract, could be ints, reals, trees, …)
init : F1 × BA→W
update : BA

Labels to S

×W

Weight of B

→W × F3 ×W
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Refinement Interface for F

Functor Encoding
Labels A ♭ : FX→ B

Bags

(A × X)

Refinement Interface
Type W (abstract, could be ints, reals, trees, …)
init : F1 × BA→W
update : BA

Labels to S

×W

Weight of B

→W × F3 ×W

Example: FX = RX (real-valued functor)

A := R W := R× R

init(_, ) = (0,)
update(, (r, b)) = ((r + b − ,), . . .)
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Refinement Interface for F

Functor Encoding
Labels A ♭ : FX→ B

Bags

(A × X)

Refinement Interface
Type W (abstract, could be ints, reals, trees, …)
init : F1 × BA→W
update : BA

Labels to S

×W

Weight of B

→W × F3 ×W

Modular: Refinement Interface can automatically be derived for
composite functors (e.g. PD(−),M × M(−))
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Implementation “CoPaR”

Generic
Imple-

mentation

{f,n} x P({a,b} x X)

q: (n, {(a, p), (b, r)})
p: (n, {(a, q), (b, r)})
r: (f, {(a, q), (b, p)})

Refinement
Interface

Block 0: r
Block 1: q, p

Available at:
git8.cs.fau.de/
software/copar
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Implementation - Refinement Interface

Math
init : F1 × BA→W
update : BA ×W→W × F3 ×W
Haskell
class (Ord (F1 f ), Ord (F3 f)) ⇒ RefinementInterface f where

init :: F1 f → [Label f] → Weight f
update :: [Label f ] → Weight f → (Weight f, F3 f, Weight f)

Also Modular: Automatically derived for composite functors
(e.g. PD(−),M × M(−))
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Complexity

Refinement Interface
init : F1 × BA→W, update : BA ×W→W × F3 ×W

O(|ℓ| · p(n,m)) O(|ℓ| · p(n,m))

|ℓ| number of labels to subblock (BA)
n number of states in coalgebra
m number of edges in coalgebra

12 / 22



Complexity

Refinement Interface
init : F1 × BA→W, update : BA ×W→W × F3 ×W

O(|ℓ| · p(n,m)) O(|ℓ| · p(n,m))

Overall
O((m + n) · logn · p(n,m))

Modularity: May add intermediate states
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System Functor FX Run-Time (m ≥ n) Specific algorithm
Transition
Systems PfX m · logn = m · logn Paige, Tarjan 1987

LTS Pf(N× X) m · logm = m · logm Dovier, Piazza, Policriti 2004

> m · logn Valmari 2009

Markov
Chains R(X) m · logn = m · logn Valmari, Franceschinis 2010

DFA 2 × XA (A fixed) n · logn = n · logn Hopcroft 1971

2 × Pf(A × X) |A| · n ·
log(n + |A|) ≈ |A| · n · logn Gries 1973/Knuutila 2001

Segala
Systems Pf(A × DX) mD · logmPf

< m · logn Baier, Engelen,
Majster-Cederbaum 2000

= mD · logmPf Groote, Verduzco, de Vink 2018

Colour
Refinement BfX m · logn = m · logn Berkholz, Bonsma, Grohe 2017

Weighted
Tree
Automata

M × M(X)
M non-cancellative

m · log2m ≪ m · n Högberg, Maletti, May 2007

M × M(X)
M cancellative

m · logm =
poly. bound

m · logn Högberg, Maletti, May 2007



Case Study: Weighted Tree Automata

Definition
WTA: (Q,,M, ƒ , μ)

Q: Set of states
: Ranked alphabet
M: Semiring (M, ·,+)
ƒ : Final weight distribution ƒ : Q→ M
μ: Transition function μ : k → Qk → Q→ M
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Case Study: Weighted Tree Automata

Example Language: zigzag (Högberg, Maletti, May)

 = {β/0, σ/2}, M = N

zigzg: T → N

zigzg(β ) = 1
zigzg(σ(β,_) ) = 2
zigzg(σ(σ(_, t),_) )

= 2 + zigzg(t)

σ 7→ 3

σ 7→ 2 β 7→ 1

β 7→ 1 β 7→ 1

⇒ Recognized by automaton with 3 states

15 / 22



Case Study: Weighted Tree Automata

Tasks

Describe the functor

FX = M × M(X)

Find equivalence that corresponds to coalgebraic behavioural
equivalence

“Backwards Bisimulation”

Implement refinement interface

Composite of:
M × −
M(−)
−
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Case Study: Weighted Tree Automata

Tasks

Describe the functor
FX = M × M(X)
Find equivalence that corresponds to coalgebraic behavioural
equivalence
“Backwards Bisimulation”
Implement refinement interface

Composite of:
M × − Done
M(−) ???
− Done
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Refinement Interface for M(−)

M cancellative ⇔  + c = b + c⇒  = b

Refinement Interface

M cancellative? Done (via Grothendieck construction)
M non-cancellative? ???
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Non-cancellative Monoids

Problem
Need to subtract B − S



. . .. . .

1 kb1· · · · · ·

B

S B \ S

Trick
We know:

S = 1 + . . . + n, B = 1 + . . . + n + b1 + . . . + bm

⇒ Don’t evaluate sums; store and manipulate symbolically
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Complexity for non-cancellative monoids
Sums stored as balanced search trees M→ N

⇒ Size of those trees min(|M|,m)
⇒ Operations in O(logmin(|M|,m))

init
O(1)

update
O(|ℓ| · logmin(|M|,m))

⇓
p(n,m) = logmin(|M|,m)
⇓ ⇓

M finite
O(m logm)

M infinite
O(m log2m)
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System Functor FX Run-Time (m ≥ n) Specific algorithm
Transition
Systems PfX m · logn = m · logn Paige, Tarjan 1987
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Thanks!
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